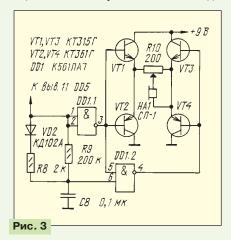
ЭЛЕКТРОННЫЕ МУЗЫКАЛЬНЫЕ ИНСТРУМЕНТЫ

Темп	Частота, F		Коэффициент деления		Частота,	Таблица 2 Погрешность,
	уд./мин	Гц	K ₂	K ₀ =512·K ₂	F _{факт} , Гц	%
Largo	45	0,75	85	43 520	0,7529	0,39
Lento	52	0,8(6)	74	37 888	0,8648	-0,21
Adagio	60	1	64	32 768	1	0
Andante	70	1,1(6)	55	28 160	1,1636	-0,26
Andantino	82	1,3(6)	47	24 064	1,3617	-0.36
Moderato	96	1,6	40	20 480	1,6	Ó
Allegretto	112	1,8(6)	34	17 408	1,8823	0,84
Allegro	132	2,2	29	14 848	2,2068	0,31
Vivo	154	2,5(6)	25	12 800	2,56	-0.26
Presto	180	3	21	10 752	3,0476	1,59
Prestissimo	210	3,5	18	9216	3,5555	1,59


Долговременная же стабильность частоты здесь гораздо выше. Заметим, что вместо короткого импульса длительностью около 6,8 мс формируется импульс длительностью примеро 7,8 мс. То и другое значение равно половине периода повторения импульсов, подаваемых на вход второго делителя частоты. В остальном работа этого метронома ничем не отличается от предыдущего.

Так как периодически контролировать частоту F_0 задающего генератора уже не нужно, переключатель SA2 из схемы исключают, а базу транзистора VT1 соединяют с выходом элемента DD5.4 (обозначения на рис.1).

Поскольку в этом варианте метронома высвободились два элемента DD1.1 и DD1.2, на них целесообразно собрать предоконечный узел двухтактного мостового усилителя (исключив транзистор VT1, резисторы R5 и R6, конденсатор С6 и излучатель HA1 — рис. 1), работающего в экономичном переключательном режиме (рис.3).

Усилитель работает следующим образом. Пока "щелчка" нет, на входе усилителя, соединенном с выводом 11 микросхемы DD5, присутствует запрещающий низкий уровень, поэтому на выходе элемента DD1.1 — высокий уровень. Конденсатор С8 при этом разряжен через резистор R9. Для его разрядки достаточно всего лишь 15 мс. Из-за этого и на выходе элемента DD1.2 также высокий уровень, вследствие чего все транзисторы VT1—VT4 закрыты и ток через переменный резистор R10 не течет.

Когда на входе усилителя появляется "щелчок", представляющий собой пакет прямоугольных импульсов, конденсатор С8 быстро заряжается через диод VD2 и резистор R8. Для зарядки необходимо около 0,15 мс. Он остается заряженным, пока на входе усилителя есть импульсы "щелчка". Поэтому сигналы на выходе

элементов DD1.1 и DD1.2 во время звуковой посылки противофазны, что и нужно для правильной работы мостового усилителя [2]. Через переменный резистор R10 — регулятор громкости метронома — течет переменный ток, периодически изменяющий не только свою величину, но и направление, а излучатель НА1 воспроизводит эту звуковую частоту.

Но как только очередной "щелчок" заканчивается, конденсатор С8 разряжается настолько, что высокий уровень появляется как на выходе элемента DD1.1, так и DD1.2. В дальнейшем цикл работы усилителя метронома повторяется.

Громкость метронома с таким усилителем существенно возрастает, но увеличивается и средний потребляемый ток. Например, при темпе Largo метроном потребляет в среднем менее 1 мА, а при темпе Prestissimo — порядка 3 мА. Но во время "щелчка" и чуть позже него потребляемый ток составляет приблизительно 30 мА, поэтому питать такой метроном от батареи "Крона" вряд ли целесообразно. Лучше использовать 5...9 элементов 334 или 337, столько же аккумуляторов Д-0,55 или 2...3 батареи 3336. Несколько снизить энергопотребление удается, уменьшив сопротивление резистора R9. Тогда время, в течение которого транзисторы VT1 и VT4 постоянно открыты после "щелчка", сокращается. Маломощную часть устройства (микросхемы) питают от того же источника через диод VD1.

Частота резонанса излучателя СП-1, согласно [7], составляет 3...4 кГц. Это означает, что сопротивление резистора R7 придется уменьшить в 1,5...2 раза, настроив тем самым звуковой генератор на резонанс конкретного излучателя. Кроме того, может потребоваться увеличение емкости конденсатора С2 примерно до 0,15 мкФ либо увеличение сопротивления резисторов R3 и R4 до 30 и 300 кОм соответственно.

ЛИТЕРАТУРА

- Банников В. Музыкальный метроном.
 Радио, 1996, № 3, с. 52—55.
- 2. **Банников В.** Трехтональные музыкальные сигнализаторы. Радио, 1996, № 1, с. 46—48; № 2, с. 45—47.
- 3. **Алексеев С.** Применение микросхем серии К561. Радио, 1986, № 12, с. 42—46.
- 4. **Алексеев С.** Формирователи и генераторы на микросхемах структуры КМОП. Радио, 1985, № 8, с. 31—35.
- 5. **Александров И.** Применение звукоизлучателя ЗП-1. Радио, 1985, № 12, с. 54.
- 6. **Алексеев С.** Применение микросхем серии К176. Радио, 1984, № 4, с. 25—28.
- 7. **Нечаев И.** Охранные устройства с излучателем СП-1. Радио, 1986, № 3, с. 42, 43.

К настоящему времени четко выявилось три направления развития супертелефонов: аппараты с питанием от электросети, аппараты без сетевого питания и АОН-приставки.

Аппараты с сетевым питанием являются прямыми потомками АОНов на процессоре Z80 [1]. Их развитие шло по пути совершенствования схемотехники с использованием современной элементной базы и создания программного обеспечения с более широкими сервисными возможностями.

В начале основное внимание уделялось совершенствованию программного обеспечения. Среди вновь созданных версий выделялись программы "Русь".

Существенным шагом в развитии АОНов стало появление голоса — телефон не только определял, но и называл номер. Расширение возможностей потребовало увеличения объема ПЗУ. Если в первых версиях применяли ПЗУ объемом 8 килобайт, то в последующих 32, а потом и 64 килобайта. Дальнейшее совершенствование потребовало также изменения схемы аппарата, с учетом выбранного программного обеспечения. В настоящее время эти аппараты стали наиболее распространенными и выпускаются многими фирмами. Другими словами, если в начале программы писали под имеющийся аппарат, то впоследствии аппаратную часть создавали под программу, причем одной из важных задач было снижение потребляемой мощности.

Выпускаемые в настоящее время платы АОНов имеют общий принцип построения и отличаются, главным образом, применяемой элементной базой и внешним видом. Их основой являются микропроцессорные контроллеры типа 8031 (80С31) или отечественные серии К1830. В аппаратах традиционно применяют светодиодные индикаторы. Большой выбор этих современных приборов позволяет подобрать нужный индикатор с подходящими размерами знаков и цветом свечения.

Последняя версия программы — "Русь 23 СР". Сейчас у нее уже появилось несколько модификаций, в том числе предназначенных для городов, в которых используются шести- и пятизначные номера телефонов. Перечисление всех возможностей этой программы заняло бы слишком много места, поэтому рассмотрим только основные

Программа может работать с телефонными аппаратами, имеющими как обычную, так и расширенную клавиатуру. Это позволяет смонтировать АОН в корпусе любого аппарата. Супертелефон имеет три вида памяти : память поступивших звонков, память исходящих звонков и записную книжку. Объем каждого вида памяти, в зависимости от конкретной аппаратной реализации, составляет от 99 до 255 ячеек. Кроме номера телефона, в памяти входящих звонков фиксируются время, дата, продолжительность разговора и категория звонившего абонента.

Функция голоса позволяет реализовать режим переадресации — телефон продиктует абоненту, в какое время и по какому номеру нужно позвонить. Возможна и частичная переадре-

52 РАДИО № 6, 1998