IFA 2009 в Берлине: 3D притяжение

В. МЕРКУЛОВ, г. Москва

Вводная часть. Очередная международная радиовыставка IFA (Internationale FunkAusstellung) состоялась в столице Германии с 4-го по 9 сентября 2009 г. В ней участвовали 1164 компании со всех континентов, арендовавших 121 000 м². Их экспозиции осмотрели 228 000 посетителей (20 % зарубежных).

Канцлер Германии А. Меркель в речи на открытии выставки поздравила присутствующих с 85-летием IFA. Она напомнила, что впервые электронное чернобелое изображение на ней демонстрировали в 1930 г., а в 1937 г. — цветное. В . 1939 г. посетители увидели выпускаемые серийно и доступные по цене черно-белые телевизоры с ЭЛТ, а в 1969 г. — цветные. В 1979 г. слушали первый СD-проигрыватель PHILIPS CD 100. В 1989 г. знакомились с мобильными и автомобильными телефонами. Не так давно, в 1999 г., осматривали первые "утонченные" плазменные панели, необычно малые по габаритам плейеры MP3 и соединяющиеся с Интернетом мобильные телефоны. А. Меркель заметила, что цифровая техника отличается меньшим энергопотреблением, и высказалась в пользу ускоренного перехода Германии на цифровое телевидение.

Как и в предыдущие годы, телевизионная аппаратура была наиболее заметна. На стендах ведущих разработчиков и изготовителей телевизоров показывали также и производимые ими стационарные и портативные ПК, мобильные телефоны, аудиотехнику. Оправданным оказалось принятое в прошлом году решение о допущении на IFA поставщиков "белой" техники, экспонатов этого направления прибавилось. Посетители могли познакомиться с многочисленными опытными и серийными разработками, предусматривающими экономию электроэнергии, электромагнитную и экологическую совместимость с окружающей средой. О наиболее интересных экспонатах рассказано дальше.

Телевидение. Многие известные азиатские, американские и европейские компании доставили на выставку ЖК и плазменные панели, показывающие трехмерную (3D) "картинку". Источниками объемных (стерео) видеоизображений служили ПК и ноутбуки (НБ). Увидеть объемные картинки позволяли специальные анаглифические очки со светофильтрами СМУ-цветов (голубого, пурпурного, желтого). Многие образцы 3D TV экранов оснастили системами окружающего звукового сопровождения. На 3-й с. обложки показана демонстрация одного из таких экранов.

Смотреть без очков стереоскопические картинки можно было на стенде германского Фраунгоферского института. Однако ни одного серийно выпускаемого 3D-телевизора не было.

Позже, в октябре 2009 г., фирма PANASONIC на японской выставке

FULL HD 3D телевизор ("очковый") с диагональю экрана 127 см (50"), который намеревается изготавливать в 2010 г. Там же на CEATEC было объявлено о начале функционирования в Японии первого кабельного канала 3D TV (обозначен-

В экспозиции германской фирмы DIOVISION посетителей удивляли псевдоэффектом 3D TV, создаваемым прикрепленной спереди к телевизору дополнительной рамой, внутренний контур которой совпадает с линиями об-

СЕАТЕС 2009 представила плазменный ного как BS11).

LCD TV Techno

World's Slimmest 5,9mm LED Module

водки экрана. Иллюзия трехмерности изображения достигается благодаря 'утопленности" плоскости экрана. Предложение запатентовано. По мнению автора изобретения, оно одинаково подходит к любым экранам, большим и малым, ЖК и плазменным, ЭЛТ, мониторов ПК, медиаплейеров, мобильных телефонов, фоторамок. Изготовление таких обрамлений описано в статье "3D perception experience for all 2D images' <http:// Интернете по адресу www.diovision.de/pdf/ifa1eng.htm>.

Напомним, что впервые короткий (20 с) стереоскопический фильм на основе голографии был снят в России в 1976 г. в московском НИКФИ (научноисследовательском кинофотоинституте). Позже в России и во многих других странах демонстрировали голографические изображения экспонатов выставок "Сокровища Оружейной палаты". "Скифское золото". Впервые экспериментальную "очковую" модель 3D телевизора с ЭЛТ нидерландская компания PHILIPS показала на IFA в 1983 г.

Второй по актуальности на IFA была тема задней подсветки ЖК телевизоров светодиодами (LED LCD TV) взамен флуоресцентных ламп с холодным катодом (Cold Cathode Fluorescent Lamps -CCFL). Проявилось несколько технических решений. Пока наиболее распространенное из них предусматривает расположение белых светодиодов позади экрана, рядом с торцами по всему его контуру или частично с боковых сторон (Edge LED TV). Равномерное тыловое освещение обеспечивает рассеивающая матрица, совпадающая по габаритам с экраном. Благодаря тонкой (миллиметры) пластине рассеивателя сам телевизор получается также довольно тонким.

Южнокорейная компания LG демонстрировала серийно выпускаемые ЖК панели с модулем подсветки толщиной 5,9 мм (**рис. 1**), диагоналями экранов 107 см (42") и 119 см (47") и массой 6,1 и 7,3 кг соответственно. К этим телевизорам LG предложила DVD плейеры, вмон-. тированные в подставку (**рис. 2**).

При втором способе подсветки (Direct LED) светодиоды, белые или многоцветные (RGB), распределены позади экрана

равномерно. Диодами управляет микропроцессор. Благодаря прямой подсветке улучшаются основные характеристики телевизора: контрастность, четкость, цветопередача. Однако при этом диодов требуется больше, телевизоры прибавляют в толщине и массе, возрастает потребление электроэнергии.

Рис. 2

Японская компания TOSHIBA показала на IFA прототип новейшего телевизора с прямой подсветкой, а позже, на упомянутой выше CEATEC, — уже серийно производимую модель "TOSHIBA Cell Regza 55X1". За широкий набор функций и высокие технические характеристики аппарат провозгласили лучшим современным телевизором (3-я с. обложки). Обозначение Cell указывает на применение в нем одноименного мощного управляющего процессора, разработанного фирмами SONY и IBM и примененного в

серийно выпускаемой популярной телеприставке "Sony PlayStation".

Активную подсветку обеспечивают несколько тысяч многоцветных светодиодов в 512 группах (сегментах). В телевизор встроен HDD с объемом памяти 2 ТБ. Микропроцессор позволяет одновременно записывать программы по восьми каналам. На HDD можно сохранить 208 ч (по 26 ч на канал) записей с качеством ТВВЧ или в несколько раз больше стандарта DVD. Ориентироваться в архиве поможет система навигации с временными метками. Система

беспроводного управления телевизором находится в отдельном блоке, который можно подключить к ПК по сетевой технологии стандарта DLNA (Digital Living Network Alliance). Блок допускает использование карт памяти SD.

Для телевизоров, не имеющих HDD, в фирме разработали внешний накопитель "TOSHIBA StorE TV" (рис. 3) на жестком диске диаметром 8,9 см (3,5") и объемом 2 ТБ с медиаплейером. Он обеспечивает запись с разрешением по вертикали 720 линий, а с интерполяцией — до 1080 линий. Поддерживают видеоформаты MPEG-2, AVI и MP4. Оснащен разъемами HDMI и USB. Управляется ПДУ. Габариты — 170×46×111 мм.

Австралийская фирма OSTENDO демонстрировала уже продаваемый необычно искривленный монитор с аксветодиодной подсветкой "OSTENDO CRVD curved" (3-я с. обложки) с диагональю экрана 109 см (43") при соотношении сторон 32:10 и разрешении 2880×900 пкс. Благодаря периферийному зрению создается иллюзия сопричастности. Такой дисплей позволяет вместить информацию трех обычных офисных мониторов, что обеспечивает комфортную работу с большим числом открытых программ. Габариты с подставкой — 1055×530×386 мм, масса — 21 кг.

Компания SONY занимала на IFA самую большую площадь (6000 м²). На пресс-конференции ее руководители заявили о намерении снять в формате 3D профессиональной аппаратурой около 25 матчей футбольного чемпионата мира 2010 г. и показывать фильмы при публичных акциях, а также в собственных кинотеатрах и магазинах. Среди множества изделий посетителей занимали телевизоры, соединяемые с Интернетом.

Наибольший интерес вызывала популярная игровая приставка "SONY Play-Station", продаваемая с марта 2000 г.

С 1 сентября 2009 г. на всех континентах в продажу поступил ее модерни-"SONY Playзированный вариант — Station 3 Slim" (PS3) (рис. 4). Устройство воспроизводит диски Blu-Ray, DVD не только игрового содержания, но и с художественными фильмами. Снабжен HDD на 120 ГБ с возможностью замены самим пользователем на диск большего объема, например 250 ГБ, без нарушения гарантии и встроенным Web-браузером. В PS3 применены упомянутый выше микропроцессор Cell, производимый по технологии 45 нм с тактовой частотой 3,2 ГГц и памятью XDR DRAM на 256 МБ, графический процессор с рабочей частотой 550 МГц и архитектуры NVIDIA с памятью 256 GDDR3 (700 МГц). В сравнении с прототипами у PS3 уменьшились габариты, масса, энергопотребление.

Компьютерная техника. Для широкого круга пользователей тайваньские компании ACER и ASUS разработали ноутбуки, способные выводить на экран трехмерные изображения, например, дизайнерских решений по внутреннему оформлению домов и квартир, ландшафтов земельных участков или печатных плат и конструкций радиоприборов, а также художественных фильмов, компьютерных игр и др.

В модели "ACER Aspire 5738DG" объемный эффект достигается благодаря ОС Windows 7 Home Premium, программному обеспечению и очкам. Компьютер оснащен микропроцессором INTEL Core Duo T6600 с тактовой частотой 2,2 ГГц и кэш-памятью второго уровня (L2) на 2 МБ, графической подсистемой ATI Mobility Radeon HD 4570 с памятью 512 МБ. Экран имеет диагональ 40 см (15,6").

Модель "ASUS G72GX" оборудована микропроцессором INTEL Core i7, ОЗУ 4 ГБ, видеокартой NVIDIA GeForce GTX160M (разрешением 1920×1080 пкс) с памятью GDDR3 на 1 ГБ, двумя HDD на 320 ГБ. Размер экрана — 44 см (17,3") по диагонали. Менее мощная разработка "ASUS G51J3D" имеет экран с диагональю 40 см (15,6").

Фототехника. Японская компания FUJIFILM доставила на выставку впервые в мире разработанную и подготовленную к серийному выпуску цифровую 3D фотокамеру "FUJIFILM FinePix Real 3D" (3-я с. обложки). В основу ее рабо-

ты положена фирменная система FinePix Real 3D System с микропроцессором RP (RealPhoto) Processor 3D. Он обеспечивает синхронное срабатывание затворов обоих объективов (сенсоров) с погрешностью 0,1 % (точность 0,1 мс). Полученные изображения просматривают без очков на собственном дисплее LCD.

Почти одновременно FUJIFILM объявила о выпуске фоторамки "FinePix Real 3DV1" (**3-я с. обложки**) с диагональю экрана 20 см (8") для просмотра без очков 3D фотоснимков, сделанных камерой собственного производства. Разрешение — 800×600 пкс. Устройством управляет ПДУ. Фоторамка позволяет просматривать двумерные (2D) снимки как обычно или прибавить им пространственный эффект.

Компания предполагает в ближайшем будущем выпустить принтер 3D для получения отпечатков на специальной фотобумаге.

Аудиотехника. Разработчики звуковой части современных сверхузких ЖК и плазменных телевизоров вынуждены помещать в них малые динамические головки. Специалисты британской фирмы Q ACOUSTICS заметили, что у таких телевизоров по мере утончения ухудшается звуковоспроизведение. Они предложили телевизоры с диагональю от 81 см (32") до 107 см (42") оснащать дополнительной аудиосистемой Q-TV2, состоящей из плоского УЗЧ, двух звуковых колонок (ЗК) и раздвижной крепежной рамы (рис. 5). Усилитель и рама помещены позади экрана, а расположенные на раме поворотные ЗК — по бокам. Стереофонический УЗЧ создает звуко-

вую мощность 25 Вт для каждого канала и еще 50 Вт для сабвуфера. Каждая 3К состоит из двух СЧ и ВЧ головок по 25 Вт. В сабвуфере применена одна головка на 50 Вт. Такая система будет применена и в телевизорах с диагоналями экранов от 127 см (50") до 165 см (65").